Aluminum Comparison ## **Aluminum Extrusion Advantages:** #### versus Stamping: Stamping tooling is typically 5 times the cost of extrusion tooling and takes many more weeks to build. #### versus Roll-Forming: Roll-forming tooling costs are very high compared to an extrusion die and takes many more weeks to build. In addition, the extrusion process doesn't apply corner stress to the part like forming & bending operations do. #### versus Casting: Sand and permanent-mold casting require extensive finishing before use. Tooling can be very expensive and typically take 20 weeks to build. #### versus Welding: Welding several components together is a much slower process than a single push of aluminum through an extrusion die in an extrusion press. In addition, the cost of welding jigs & fixtures often cost more than extrusion dies. #### versus Machining: Machining a shape from a block of aluminum is almost always more expensive than extrusion. The chips and scrap resulting from machining often weigh more than the finished part. Quite often, aluminum extrusions are even more cost effective for short-run prototypes because the tooling is so inexpensive, the production time is small and the finished part will give you a true structural representation of an aluminum extrusion. ## Compare the properties of aluminum to other materials: | Property | Aluminum
Extrusions | Roll Formed
Steel | Copper
Extrusions | Molded
Plastics | Wood | Vinyl | |---------------------------------|---|--|--|--|--|---| | Strength
(Tensile) | Very good
mechanical
properties | Very high
mechanical
properties | Average
to low
mechanical
properties | Wide variation
in properties
from .08 to
.8 tensile
strength of
aluminum
extrusions for
glass filled
compounds | Good
compressive
properties;
variable with
the species
of wood and
moisture
content | Low
mechanical
properties | | Density | Lightweight:
about 1/3
that of copper
or steel | High density;
high pounds
per cubic foot | About
three times
heavier than
aluminum | Very light-
weight; about
60% the
weight of
aluminum | Very light-
weight;
about 1/3
the density
of aluminum | Very light-
weight; about
60% the
density of
aluminum | | Strength-
to-Weight
Ratio | Very Good | Good | Low | Low-good | Low-good | Low-good | ph 920.922.7207 | fax 920.926.7550 | sales@midstal.com **Mid-States Aluminum Corp.** ## (Properties comparison continued) | Property | Aluminum
Extrusions | Roll Formed
Steel | Copper
Extrusions | Molded
Plastics | Wood | Vinyl | |----------------------------|--|--|--|---|--|--| | Corrosion
Resistance | Excellent; it can be further increased, along with enhanced appearance, through anodizing or other coatings | Poor; usually
requires
protective
coatings for
corrosion
service | Excellent | Excellent;
choice of
compound
and color
important for
weatherability
(UV) | Not directly
applicable;
decomposes
in the
presence of
some acids | Excellent;
high esistance
to alkalis
and salts but
is attacked
by organic
solvents and
strong acids | | Formability | Easily formable and extruded in a wide variety of complex shapes including multivoid hollows. Formable to net shapes and extrusions provide for the placement of metal where it's needed | Readily
formable;
thinner cross-
sections than
aluminum
extrusions;
metal cannot
always be
located where
best used
in design | Excellent
formability
and easily
extrudable.
Formable to
net shapes | Easily formed
or molded
into complex
shapes | Poor; cannot
be routinely
formed | Easily formed
or molded
into complex
shapes | | Electrical
Conductivity | Excellent;
on a pound
for pound
basis, twice
as efficient
as copper,
used in bus
and electric
connector
applications | Poor; cannot
usually be used
as an electrical
conductor | Excellent
thermal
conductivity | Poor; used as
an insulator,
high dielectric
capability | Poor; cannot
be used as
an electrical
conductor.
Usually
cannot be
employed as
an insulator | Poor;
electrical
and thermal
insulating
characteristics | | Thermal
Conductivity | Excellent;
ideal for heat
exchanger
applications | Poor; cannot
usually be
used as a heat
exchanger | Excellent
thermal
conductivity;
second only
to silver in
industrial
applications | Poor; low
coefficient
of thermal
(heat) transfer | Poor | Poor | | Finishing | A near limitless
array of finishes
can be applied
including
mechanical
and chemical
prefinishes,
anodic coatings,
paints and
electroplated
finishes | Protective
coatings
such as paint
finishes are
employed
along with
electroplated
finishes | A variety of
coatings and
platings can
be employed | Color can
be integral
with material
as well as
plated,
painted and
hot stamped | Paint and
stain coatings
can be
employed | Color can be integral with material | | Recyclability | High scrap
value; routinely
reprocessed to
generate new
extrusions | Low scrap
value | Very high
scrap value | Routinely
reprocessed
but loses
properties;
reprocessed
material is
added to
new stock | Low scrap
value | Low scrap
value;
routinely
reprocessed | 2 **Mid-States Aluminum Corp.** ### (Properties comparison continued) | Property | Aluminum
Extrusions | Roll Formed
Steel | Copper
Extrusions | Molded
Plastics | Wood | Vinyl | |----------------------|--|---|--|--|---|--| | Tooling
Economics | Extrusion tooling is relatively inexpensive. Generaly, a simple shape will cost only a few hundred dollars. Short lead times for tooling construction. | Typical tooling costs are thousands of dollars. Long lead times are required. | Inexpensive
tooling
costs for
extrusions | Tooling is expensive; generally in the thousands of dollars. Long lead times required. | Very
inexpensive | Relatively inexpensive | | Energy
Savings | Lightwight
aluminum
extrusions can
offer energy
savings for
transportation
vehicles. | Life-time
energy
requirements
for wrought
steel vehicle
components
are twice those
for aluminum
components. | In transportation vehicles, copper is less energy-efficient than aluminum. | Savings for
vehicles,
processing,
insulation | In certain applications | Can offer
energy savings
in appropriate
transportation
applications | | Combustibility | Non-combus-
tible; does not
emit any toxic
fumes when
exposed to high
temperatures | Non-combus-
tible; does not
emit any toxic
fumes when
exposed to high
temperatures | Non-combus-
tible; does
not emit any
toxic fumes
when exposed
to high
temperatures | Combustible;
may emit
toxic fumes
when exposed
to high
temperatures | Combustible;
emits toxic
fumes while
burning | Combustible.
May emit
toxic fumes
when exposed
to high
temperatures | Copyright © 1997 Aluminum Extruders Council. Used by Permission.